MSC XC Challenge - Stanton Short Task

Type: Polygon with 4 Points Task Distance: 34.7 mi

Turnpoint	Latitude	Longitude	Distance	Course
Start – Stanton Apt.	N44.4755	W093.0163		
1 - Randolph	N44.5261	W093.0200	3.5 mi	357
2 - Northfield Stop Sign	N44.4581	W093.1589	8.3 mi	236
3 - Dennison	N44.4070	W093.0395	6.9 mi	121
4 - Cannon Falls Grain Elevators	N44.5170	W093.9086	10.0 mi	40
Finish – Stanton Apt.	N44.4755	W093.0163	6.0 mi	242

Observation Zones:

Start – Stanton: Line Radius=0.306 mi, Maximum Altitude=5,500 msl

- 1 Randolph City: FAI Sector Symmetrical, Radius=1.0 mi, Angle=90
- 2 Northfield Stop Sign: FAI Sector Symmetrical, Radius=1.0 mi, Angle=90
- 3 Dennison: FAI Sector Symmetrical, Radius=1.0 mi, Angle=90
- 4 Cannon Falls Grain Elevators: FAI Sector Symmetrical, Radius=1.0 mi, Angle=90

Finish – Stanton Apt: Line Radius=0.306 mi, Minimum Altitude=2,500 msl

MSC XC Challenge

This challenge is for 32:1 gliders with a K6 like polar as well as 1-26's and modern super ships. Use the cans at each turnpoint as your glider and weather allows. Keep this in mind – more distance and less circling will improve your overall speed. A task completed on a weak day is pretty cool too.

As frequently as necessary, I will post a spreadsheet that summarizes the parameters of your flights as computed by Naviter's *SeeYou*. The big deal is this - you now can see your progress relative to other pilots. You are in effect, teaching each other better cross country flight skills as measured by different parameters in the *SeeYou* program.

Rules:

- 1. Maximum start height 5.5k msl.
- 2. Minimum finish height 2.5k msl.

Your actions:

- 1. Use the Stanton turnpoint file provided by Paul and then add *MSC Task 2*. The coordinates are on the task sheets 2 and 3.
- 2. Ensure that your glider trailer is ready to roll for a retrieve.
- 3. Prepare your map, flight computer and any other favored items to fly the courses.
- 4. Declare the task in your flight computer if you can. My attempt to summarize your flight will be easier.
- 5. Submit the flight to the OLC if you wish.
- 6. Submit the flight to me as an igc file Leon Z. You will find my email address on the club roster.
- 7. Look for your flight on the XC spreadsheet. You will find the results at this URL: www.region7soaringcontest.com under the tab *Tasks and Results*.
- 8. Flight summaries will be ranked by date and handicap speed.

Your goals:

- 1. Become comfortable with these components.
 - 1.1 Fly straight into the wind and down wind to discover lines of lift.
 - 1.2 Learn to center thermals using the 270-method, and the surge method.
 - 1.3 Fly the west half or the east half of the Stanton Short Task on the weakest days.
 - 1.4 Develop a flight band for your glider even a simple one.
 - 1.5 Study the weather and learn to recognize a soarable day over the task areas.
 - 1.6 Learn how to add and change tasks in your flight computer.
 - 1.7 Partake in hangar talk at day's end.
- 2. Fly the task that you are comfortable with having these goals in mind.
 - 2.1 Get around the course.
 - 2.2 Use lines of energy towards the next turn point.
 - 2.3 Decrease your centering time in a thermal.
 - 2.4 Use the STF for your glider associated with the day's average climb rate.
 - 2.5 Fly a flight band, look ahead and be prepared to shift gears.
 - 2.6 Fly a final glide to the finish and seek ways to improve it.
- 3. Modify the tasks to meet your interest.
 - 3.1 Change the observation zones in your task to smaller radii or photo sectors.
 - 3.2 Change your start and finish lines to circles with one or two mi radii.
 - 3.3 On weak days, clip the turnpoint circle; on strong days, fly deep into the TP circle.

By lmz